




1. Introduction

There are a number of methods of representing images [11]

among which are borders, arrays, and skeletons. In [3,4,12-20]

attention is focussed on the quadtree [5-8] and its inter-

changeability with border and array representations. In

[3,13,14,18,1 methods for the computation of geometrical

properties such as connectivity, perimeter, genus, and distance

are presented. In this paper we demonstrate the usefulness of

the Chessboard distance transform of [18] in computing the

skeleton and medial axis transform [1,2,10,11] of an image repre-

sented by a quadtree. This may be useful in performing

operations such as propagation, shrinking, and matching [11].

In addition, it leads zo a more compact representation of

the image which is also less sensitive to shift. We term

this representation the QMAT.

Section 2 contains a discussion of skeletons and

medial axis transforms and their adaptation to the

quadtree. In Section 3 we discuss a number of algorithms

for the computation of the QMAT and prove their equivalence.

Sections 4 and 5 contain a formal description of the best of

these algorithms and an analysis of its execution time. The

chosen algorithm is motivated by closely scrutinizing the

geometrical properties of the quadtree method of representation.

We use a variant of ALGOL 60 [9] in the formal presentation of

the algorithm. Reconstruction of a quadtree from its QMAT

will be treated in a subsequent paper.



2. Medial Axis Transforms, Quadtrees, and Skeletons

Given an image where the set of points in a certain region

are labeled S and the set of points outside of the region are

labeled S (analoqous to BLACK and WHITE respectively). We say

that for a point x and a set V, the distance, according to

a suitably defined distance metric, d, from x to the nearest

point of V is d(x,V) = min{d(x,yjyEV}. Two points x and y

are said to be neighbors if d(x,y) = 1. We are interested

in a subset of S, say T, such that all elements of T have

a distance from T which is a local maximum. In other

words, for each point in T, no neighboring point in S but not

in T has a greater distance from S. The set of points com-

prising T is said to constitute a skeletal description of S.

As an example, consider the rectangle in Figure 1 whose

skeleton consists of line segments labeled a, b, c, d, and e.

If we know the points of the skeleton and their associated

distance values, then we can reconstruct S exactly. The set

of points comprising the skeleton and their associated values

is termed the medial axis transform (MAT). Clearly, the MAT

of S provides a concise method of defining and representing S.

For example, using a Euclidean distance metric [2,11], the MAT

corresponding to a circle is a point at its center having a

distance value equal to the circle's radius.

Clearly, the definition of the distance metric plays an

important role in determining the form of the MAT. The most



commonly known distance metric is the Euclidean distance

dE(p,q) = V(px-q) 2 + (py-qy) 2

whose maximal blocks are discs. Two other metrics which are

more common in digital picture processing are the Absolute

Value distance (also known as the City Block distance)

dA(p,q) = Ipx-qxI + Ip y-qy I

whose maximal blocks are diamonds, and the Maximal Value

distance (also known as the Chessboard distance)

dM(p,q) = max {Ipx-qxl, IP y-qy 1}

whose maximal blocks are squares. Note that in any case,

the MAT determines the entire image although it is clear that

a point in the image may lie in more than one maximal block.

Figures 2c and 2d show the MATs of the rectangle of Figure 2a

using d A and dM respectively. Figure 2b shows dA and dM for

the rectangle, which in this example are identical.

Maximal blocks can be of any size and at any position.

Thus they are somewhat unwieldy as primitive elements for

representation purposes since the process of determining them

may be complex. The quadtree approach to image representation

is an attempt to exploit the maximal block concept in a more

systematic manner. Given a 2n by 2n array of unit pixels, we

repeatedly subdivide the array into quadrants, subquadrants,...

until we obtain blocks (possibly single pixels) which consist-

entirely of a single value (e.g., gray level). This process

is represented by a tree of out degree 4 in which the root



node represents the entire array, the four sons of the root

node represent the quadrants, and the terminal nodes corre-

spond to those blocks of the array for which no further

subdivision is necessary. The nodes at level k (if any)

represent blocks of size 2kx2k and are often referred to as

nodes of size 2k . Thus a node at level 0 corresponds to a

single pixel in the image, while a node at level n is the

root of the quadtree. For example, Figure 3b is a block

decomposition of the region in Figure 3a while Figure 3c is

the corresponding quadtree. In general, we will be dealing

with two values 1 and 0 where BLACK and WHITE square nodes

in the tree represent blocks consisting entirely of l's and

0's respectively. Circular nodes, also termed GRAY nodes,

denote non-terminal nodes.

In [18,19] the concept of distance is applied to a quad-

tree. In particular, it was shown in [18] that the Chessboard

distance metric is especially suitable for a quadtree since

it has the property that given a point P, the set of points

q such that d(p,q) s t is a square. The Chessboard distance

transform for a quadtree, DIST, was defined as a function that

yields for each BLACK block in the quadtree the Chessboard

distance from the center of the block to the nearest point

which is on a BLACK-WHITE border. More formally, letting x

be the center of a BLACK block b, z be a point on the border

of the WHITE block w, we have



F(b,w) - d(xz)z

DIST(b) minF (b,w)w

We also say that DIST of a WHITE block is zero and that the

border is BLACK for the purpose of the computation of F and

DIST.

We are now ready to define the Quadtree Medial Axis

Transform (QMAT). We first define the Quadtree Skeleton.

Let the set of BLACK blocks in the image be denoted by B.

For each BLACK block, bi, let S(bi) be the part of the image

spanned by a square with side width 2*DIST(bi) centered

about bi . The Quadtree Skeleton consists of the set, T, of

BLACK blocks satisfying the following properties:

(1) area(B) = UNION(S(ti))

(2) for any tjET AbkOB (kj) D S(tj)S(b k

(3) Vb iEB 3tjET 9 S(bi)JS(t(b

Property (1) insures that the entire image is spanned by

the skeleton. Property (2) is termed the subsumption pro-

perty and we say that b. is subsumed by bk when S(bj)S(b

Property (2) means that the elements of the Quadtree Skeleton

are the blocks with the largest distance transform values.

Note that it is not the same as saying that



itkET (k#j) 9 S(tj)rS(tk as will be seen below. Property

(3) insures that no block in B and not in T requires more

than one element of T for its subsumption--e.g., one half of

the block is subsumed by one element of T and the other

half is subsumed by another element of T.

Theorem 1: The Quadtree Skeleton of an image is unique.

Proof: Assume that the Quadtree Skeleton is not unique.

Let T1 and T2 both be Quadtree Skeletons of the same image--

i.e., B = UNION(S(tli)) tliET1 and B = UNION(S(t2j) t2jET2 .*

Assume, without loss of generality, that 3tlkTl tlkJT Z-

Therefore, by property (3) 3t2 VET2 (t2Z#tlk) 9 S(tli) S(t 2Z).

However, this contradicts property (2) which stipulates that

for any tliET1 3biEB (bi#tli) S(tli)QS(bi). Hence, the

Quadtree Skeleton of an image is unique.

Q.E.D.

The QMAT of an image is the quadtree whose BLACK nodes

correspond to the BLACK blocks comprising the Quadtree

Skeleton and their associated Chessboard distance transform

values. All remaining nodes in the QMAT are WHITE and GRAY

with distance value zero. For example, Figure 3d contains

the Chessboard distance transform corresponding to the region

given in Figure 3a. Figures 3c and 3f contain the block and

tree representations respectively of the QMAT of Figure 3a.



We now make the following observations with the aid of

Figure 3. The squares spanned by the Chessboard distance

transform of the blocks of the QMAT are not necessarily dis-

joint. For example, block 11 is subsumed by both blocks 1 and 15.

. Rcall that the subsumption property (i.e., proper y. (2)) means

that the elements of the QMAT are the blocks with the largest

distance transform values. For example, the QMAT consists o-

blocks 1, 11, and 15 rather than blocks 1, 12, and 15 since

block 12 is subsumed by block 11. The latter result would

have been legal had we defined the Quadtree Skeleton as the

set, T, of BLACK blocks such that area(B) = UNION(S(ti))tiET

and for any tjET 3 tk E T, kyj, such that S(tj) C S(tk). Note

that such a definition would lead to a QMAT which contains

more nodes (e.g., WHITE node N in Figure 3f would be replaced

by a GRAY node having BLACK son 12 and 77I1ITE sons 30, 31, and 32).

The fact that the border of the image is assumed to be BLACK

results in minimizing the number of nodes in the QMAT. Without

this assumption, block 1 would be of radius 4 and would not

lead to the subsumption of blocks 2, 3, 4, 8, 9, and 10.

Note that blocks 5 and 11 are subsumed by block 15 anyway

so that their subsumption is not dependent on our assumption.

Before proceeding any further it is appropriate to make

a few additional comments about property (3) of the Quadtree

Skeleton definition. This property does not yield a minimal



set of blocks. For example, in the image of Figure 4a,

property (3) requires that the Quadtree Skeleton contain

blocks 5, 14, and 15 while in actuality blocks 5 and 15

are sufficient since together they subsume block 14. Thus

if we were interested in a minimal set of blocks we would

modify property (3) as in (3') below:

(3') At 3 iE T 3 S(tj a UNION(S(t k ) ) tkt j
The reason we do not use the definition of a Quadtree Skele-

ton which yields the minimal set of blocks is two-fold. First,

by virtue of the definition of the QMAT, the tree size of

the QMAT would be unaffected by using property (3') instead

of property (3) since the only difference is that the addi-

tional blocks are represented by BLACK nodes rather than

WHITE nodes (e.g., node 14 in Figures 4b and 4c). That this

is always true can be seen easily by observing that for a

node to be extraneous by virtue of property (3'), it must be

subsumed by its neighbors which must themselves be BLACK.

Thus the extraneous node when represented by a WHITE node

cannot be merged with its neighbors to yield a larger node

and must remain a part of the QMAT. Second, as will be seen

in Section 3, the QMAT creation algorithm is considerably

simpler when property (3) is used.

The QMAT representation can be used as an alternative

data structure for the representation of an image. In parti-

cular, it has the property that for any image it requires at

most as many nodes as the quadtree. This is obvious when we

recall that each node in the QMAT corresponds to one or more



nodes of the quadtree and that each member of the Quadtree

Skeleton is a node in the quadtree. Of course, the QMAT does

require that the DIST value be stored with each node. As

an example of the savings in storage, consider the image in

Figure 3a. The QMAT, shown in Figure 3f, requires 17 nodes

while the quadtree, shown in Figure 3c, requires 57 nodes.

An interesting property of the QMAT is that there is a

class of images for which it requires a minimum number of

nodes regardless of the image resolution. Clearly, if the

image is all WHITE or all BLACK, then both the quadtree and the

QMAT require a single node. However, when the image consists

entirely of BLACK blocks with the exception of a row and

column of WHITE blocks of equal size adjacent to two touching

sides, then the advantage of the QMAT over the quadtree in terms

of space utilization is at a maximum. For example, consider

the image in Figure 5a and its quadtree and QMAT in Figures 5b

and 5c,respectively. The quadtree requires 45 nodes while the

QMAT requires only 5 nodes. In fact, for any image of such

a shape the QMAT requires only 5 nodes while the quadtree

requires a number of nodes which depends on the maximum

level of the tree. The exact number of nodes required for

such a quadtree of level n can be obtained by use of the

following recurrence relations. Assume, without loss of

generality, an image similar to that of Figure 5a (i.e., the



largest block is in the NW quadrant). Let ti denote the

number of nodes in a quadtree of level i and si=l be the

contribution made by the NE and SW quadrants of a quadtree of

level i.

1 i
i 1 + 1 + 2"s i_ 1 + t i_ 1  i z 1

+ 2 + 2 -si_ 1  i =1

It can be easily shown that these relations have the follow-

ing solutions:

i+2si 2 -3

t. 2 2i + 3 -4-i - 7

To see this, we observe that
i-i i+l ii

s. = 3. Z - 2 = 3-(2 -1) + 2 = 2 23
2. j=0

and substituting into t. we have

t= 2 + 2-(2 i+-3) + ti_ 1 = 4"(2 i-1) + t

Solving for t. we get

i i+3t i  4 Z (2J-l) + 1 = 4. (2i+1-2-i) + 1 2 2+-4-i-7
j=l

Thus, for a quadtree of level n, the number of nodes that

n+ 3can be saved by using the QMAT representation is 2 - 4-n-12.

For example, for n=3, the difference is 40 nodes--i.e., a

reduction by a factor of 15.



The QMAT representation also has the property that the

number of nodes necessary to represent an image is not as

shift-sensitive as is the quadtree. For example, when the

image of Figure 6a is shifted by one unit to the right yielding

Figure 6d, its quadtree gets considerably larger. In parti-

cular, Figure 6b contains 17 nodes while Figure 6e, the quad-

tree corresponding to the shifted image, contains 49 nodes.

However, the QMAT is not as sensitive to shifts since it always

requires a number of nodes less than or equal to those contained

in the quadtree. In Figure 6, the QMAT of Figure 6a, given

in Figure 6c, is identical to the quadtree. However, the QMAT

of the shifted image, given in Figure 6f, is considerably

smaller than its corresponding quadtree as well as the QMAT

of the image prior to the shift (i.e., 9 nodes vs. 17 nodes).

As another example, consider the image of Figure 7a which has

a minimal nontrivial QMAT in terms of the number of nodes

(i.e., 5 nodes). Figure 7d is the result of shifting the

image of Figure 7a by one unit to the right. Note that the

new QMAT given in Figure 7f requires more nodes than the

one corresponding to the unshifted image given in Figure 7c

(i.e., 21 nodes versus 5 nodes). However, this number is less

than the number of nodes in the shifted quadtree as shown in

Figure 7e (i.e., 21 nodes for the QMAT versus 41 nodes for the

shifted quadtree). Thus we see that the compactness of the

QMAT is also preserved when the image is subjected to shifts.



3. Algorithms for the Computation of the QMAT

Properties (2) and (3) of Section 2 suggest the

following simple two step algorithm (termed A) for determining

the QMAT. At the end of the algorithm T contains the BLACK

blocks comprising the QMAT.

Algorithm A:

(1) Sort the BLACK blocks in increasing order by value

of their Chessboard distance transform forming the

set T--i.e., DIST(ti) S DIST(t i+) tiET

(2) Starting with i=l: For each t.ET 9 3 tj(i<j) and

S(t.IS(tj), then remove ti from T.

From a computation standpoint Algorithm A is quite complex

since it involves sorting the BLACK blocks as well as examin-

ing whether or not a block is subsumed by the remaining blocks.

Instead, we use an algorithm, termed Algorithm B, which tra-

verses the quadtree in postorder (i.e., the sons of a node

are visited first) and determines for each node corresponding

to a BLACK block, say P, whether S(P) Q S(Q). Q is one of P's

eight neighbors in the N, NE, E, SE, S, SW, W, and NW direc-

tions. In general, whenever a BLACK block is subsumed by

one of its neighbors, then it appears in the QMAT as a WHITE

block. Once all the sons of a GRAY node have been processed,

then if they all correspond to WHITE blocks, then the node is

changed to correspond to a WHITE block (e.g., GRAY node N of

Figure 3c having sons 30, 12, 31, and 32 is changed to corre-

spond to a WHITE block in Figure 3f).



At this point it is appropriate to examine the notion

of subsumption in a more rigorous manner. Given adjacent

nodes Q corresponding to BLACK blocks appearing at levels

L and LQ respectively in the quadtree such that Lp > LQ

and letting D(P,Q)=DIST(Q) = 2+(LQ-1) - 2t(LP-1), then P is

said to be subsumed by Q if D(P,Q)=DIST(P). It should be

clear that D(P,Q) cannot be greater than DIST(P) since this

would contradict the definition of the Chessboard distance

transform (i.e., P would have a closer BLACK-WHITE border

point than Q although being constrained by the value of D(P,Q)

to be entirely contained in the square of side width 2*DIST(Q)

centered at Q). Clearly, when D(P,Q) < DIST(P), P is not

subsumed by Q.

When D(P,Q)=DIST(P), there are two cases to consider. If

DIST(P)=2+(LP-I), then P is adjacent to the outer border of

S(Q) and thus no BLACK blocks can be subsumed by P (e.g.,

BLACK block 9 in Figure 36 is adjacent to the outer border of

the square spanned by block 1). Thus changing block P from

BLACK to WHITE will not affect the detection of subsumption

of other nodes.

However, if DIST(P) > 2+(L P-1) (i.e., the second case to

be considered when D(P,Q)=DIST(P)), then P is not adjacent to

the outer border of S(Q). This means that some blocks which

are subsumed by Q can only be detected by virtue of being

subsumed by P since they are not adjacent to Q. Denote these

blocks by S(P,Q). It can be shown that all elements of



S(P,Q) satisfy the following properties:

(1) Q is of larger size than P.

(2) Each element of S(P,Q) is smaller in size than P.

(3) If Q is adjacent to P along side S of the BLACK block

corresponding to P, then S(P,Q) is equal to the blocks

subsume. by the opposite side, denoted by OPSIDE(S),

of P's block.

(4) If Q abuts the corner formed by sides S and T of the

BLACK block corresponding to P, then S(P,Q) is equal

to the blocks subsumed by sides OPSIDE(S) and OPSIDE(T)

of P's block.

Properties (1)-(4) imply that all elements of S(P,Q) are in

the space spanned by FATHER(P)--i.e., they are in the region

spanned by the brothers of P. This means that an algorithm

that processes a GRAY son prior to its BLACK or WHITE brothers

insures that the QMAT is formed by examining blocks for sub-

sumption according to increasing size (i.e., smaller size

first). As soon as a BLACK block is determined to be subsumed

by its neighbor, its DIST and NODETYPE fields are changed to

zero and WHITE respectively. This leads to the following

result.

Lemma 1: Both Algorithms A and B satisfy the definition of a

Quadtree Skeleton and the QMAT of an imagje.



Proof: Algorithm A clearly satisfies properties (l)-(3) of

the definition since its steps are equivalent to the defini-

tion. To show that Algorithm B meets our requirements is

slightly more complex. Properties (1) and (3) are satisfied

since Algorithm B starts with the QMAT and the quadtree being

identical and then systematically removes nodes whose corre-

sponding blocks are subsumed by others. Satisfaction of pro-

perty (2) is shown as follows. Algorithm B is based on the

principle that each block is subsumed by a neighboring block.

It examines each adjacency and removes a BLACK block from the

skeleton if it is subsumed by an adjacent block in the skeleton

(i.e., one that has not yet been removed by virtue of being

subsumed by yet another larger adjacent block). Properties

(1)-(4) of the case when D(P,Q)=DIST(P) and DIST(P) > 2t(LP-l)

and the fact that a GRAY son is processed before its BLACK

and WHITE brothers insure that no block is removed from the

skeleton before blocks that are subsumed by it. Thus we see

thatno block in the QMAT is subsumed by another block in the

quadtree. Recall from Section 2 that this is a stronger state-

ment than not being subsumed by another node in the QMAT.

Q.E.D.

Theorem 2: Algorithms A and B are equivalent.

Proof: By Lemma 1 both Algorithms A and B compute the Quadtree

Skeleton. Theorem 1 indicates that the Quadtree Skeleton of an

image is unique and our result follows.

Q.E.D.



The equivalence of Algorithms A and B can also be seen

by observing that they both start with the smallest BLACK

blocks and attempt to determine if they are subsumed by other

BLACK blocks. The key to the superiority of Algorithm B is

that no sorting is required and also that blocks that cannot

possible subsume one another are not checked for subsumption-

i.e., Algorithm B only examines a maximum of eight neigboring

blocks while Algorithm A examines all possible larger sized

BLACK blocks. Also note the simplicity of Algorithm B that

results from using property (3) rather than (3') in the

definition of a Quadtree Skeleton, since each block in the

original image can only be subsumed in its entirety. Thus

there is no need to examine whether a node is subsumed by a

set of other nodes (e.g., node 14 of Figure 4a is subsumed

by nodes 5 and 15).



4. Formal Statement of the Algorithm

Prior to describing our algorithm it is useful to define

our representation as well as some elementary operations.

Let each node in a quadtree be stored as a record containing

seven fields. The first five fields contain pointers to the

node's father and its four sons, labeled NW, NE, SE, and SW.

Given a node P and a son I, these fields are referenced as

FATHER(P) and SON(P,I) respectively. At times it is useful

to use the function SONTYPE(P) where SONTYPE(P)=Q iff

SON(FATHER(P),Q)=P. The sixth field, NODETYPE, describes

the contents of the block of the image which the node repre-

sents--i.p., BLACK, WHITE, or GRAY. The seventh field, DIST,

indicates the value of the Chessboard distance transform for

the node. This field is only meaningful for BLACK nodes.

WHITE and GRAY nodes are said to have a DIST value of zero.

Note that this is different from the concept of node distance--

i.e., for a node at level i, n-i FATHER links must be ascended

to reach the root of the tree.

The four sides of a node's block are called its N, E, S,

and W sides. They are also termed its boundaries. The expres-

sion of operations involving a block's quadrants and boundaries

is facilitated by the following predicates and functions.

ADJ(B,I) is true if and only if quadrant I is adjacent to

boundary B of the node's block; e.g., ADJ(W,SW) is true.

REFLECT(B,I) yields the quadrant which is adjacent to quadrant



I along boundary B of the block represented by I; e.g.,

REFLECT(N,SW)=NW, REFLECT(E,SW)=SE, REFLECT(S,SW)=NW, and

REFLECT(W,SW)=SE. CSIDE(B) is a side adjacent to side B

in the clockwise direction; e.g., CSIDE(N)=E. COMMONSIDE(QI,Q2)

indicates the boundary of a block which is common to quadrants

Q1 and Q2 (if Ql and Q2 are not adjacent quadrants, then the

value of COMMONSIDE(QI,Q2) is undefined); e.g., COMMONSIDE(NW,SW)

=W. QUAD(Sl,S2) is the quadrant bounded by boundaries Sl and

S2 (if Sl and S2 are not adjacent boundaries, then QUAD(Sl,S2)

is undefined); e.g., QUAD(N,W)=NW. OPQUAD(Q) is a quadrant

which is diagonally facing quadrant Q; e.g., OPQUAD(NW)=SE,

OPQUAD(NE)=SW. Figure 8 shows the relationship between the

quadrants of a node and its boundaries.

The algorithm that is described is different from Algorithm

B in that it has been modified to avoid having to distinguish

between GRAY sons and their BLACK and WHITE brothers. Instead,

whenever a BLACK block, say P, has been found to be subsumed

by an adjacent BLACK block, say Q, then P's NODETYPE field is

changed to WHITE but its DIST field is left alone. This

insures that application of the QMAT algorithm to any of P's

yet unprocessed GRAY brothers will result in their subsumption

by P if appropriate. Note that when Q is a genuine WHITE

block, D(P,Q) is negative since DIST(Q) is zero, and thus P

can't be subsumed by Q--i.e., D(P,Q) < DIST(P). Once all of



a GRAY node's sons have been processed, a check is made if

they all correspond to WHITE blocks. If yes, then they and

their father are replaced by a node having NODETYPE and DIST

field values WHITE and zero respectively. Otherwise, the

DIST field of any son corresponding to a WHITE block is set

to zero.

The main procedure is termed QMAT and is invoked with a

pointer to the root of the quadtree representing the image

and an integer corresponding to the log of the diameter of

the image (e.g., n for a 2 nby 2 nimage array). We assume

that each block's distance has already been computed by a

method such as that described in [14]. QMAT traverses the

tree and controls the examination of the eight neighbors of

each BLACK node. Note that our algorithm results in trans-

forming the original quadtree to a QMAT by overwriting the

original quadtree. This is not necessary. An alternative

algorithm would create copies of the nodes while forming the

QMAT. In fact, the only modification to our algorithm is to

create a copy of each node prior to examining its neighbors.

Procedure FINDNEIGHBOR locates a neighboring node of

greater or equal size along a specified side (e.g., N, E, S,

or W). If the node is on the edge of the image, then no

neighbor exists in the specified direction and NULL is

returned (e.g., the western neighbor of node 1 in Figure 3b).



If the node is not on the edge of the image and no neighboring

BLACK or WHITE node exists satisfying our size criteria, then

a pointer to a GRAY node of equal size is returned (e.g., the

eastern border of node 1 in Figure 3b). Procedure FINDCORNER

is analogous to FINDNEIGHBOR and locates a neighboring node

of greater or equal size along a corner (e.g., NW, NE, SE,

or SW). For example, node 7 is the NE neighbor of node 15

in Figure 3b.

As an example of the application of the algorithm, consider

the region given in Figure 3a. Figure 3b is the corresponding

block decomposition while Figure 3c is its quadtree representa-

tion. All of the BLACK nodes have labels ranging from 1 to 20

while the WHITE nodes have labels ranging from 21 to 43. The

GRAY nodes have labels rangina between A and N. The BLACK

nodes have been labeled in the order in which their subsuming

adjacencies were explored by procedure QMAT. Figure 3d con-

tains the Chessboard distance transform corresponding to

Figure 3b. Figures 3e and 3f contain the block decomposition

of the QMAT and the quadtree representation of the QMAT cor-

responding to Figure 3b respectively.



procedure QMAT(P,LEVEL);

/* convert the quadtree rooted at node P representing a

2LE V E L by 2LE V E L image to its quadtree medial axis

transform */

begin

node P,Q;

integer L, LEVEL;

quadrant I;

side S;

if BLACK(P) then

begin

for S in {N,E,S,W} do

begin

FINDNEIGHBOR(P,S,Q,L-LEVEL);

if not NULL(Q) and

DIST(Q)-2+(L-1)-2+(LEVEL-1)=DIST(P) then

begin /* P is subsumed by its neighbor Q */

NODETYPE (P) -WHITE;

return;

end ;

FIND CORNER(P,QUAD(S,CSIDE(S)) ,Q,L-LEVEL);

if not NULL(Q) and

DIST(Q)-2t(L-1)-2+(LEVEL-1)=DIST(P) then

begin /* P is subsumed by its neighbor Q *1



NODETYPE (P) E-WHITE;

return;

end;

end;

end

else if GRAY(P) then

begin

for I in {NW,NE,SW,SE} do QMAT(SON(P,I),LEVEL-l);

if WHITE(SON(P,NW)) and WHITE(SON(P,NE)) and

WHITE(SON(P,SE)) and WHITE(SON(P,SW) Y then

begin /* merge the four sons *

NODETYPE (P) -WHITE;

for I in {NW,NE,SE,SW} do

RETURNTOAVAIL (SON(P,I));

SON (P,IV -NULL;

end;

end;

else

begin

for I in {NW,NE,SE,SW} do

if WHITE(SON(P,I)) then DIST(SON(P,I))+.Q;

end;

end;

end;

end; /* WHITE nodes are left alone *



procedure FIND NEIGHBOR(P,S,Q,L)

/* given node P, return in Q the node which is adjacent to

side S of node P. L denotes the level of the tree at

which node P is initially found and the level of the tree

at which Q is finally found */

beg in

node P;

reference node Q;

side S;

reference integer L;

L-L+ 1;

if not NULL(FATHER(P)) and ADJ(S,SONTYPE(P)) then

/* find a common ancestor */

FINDNEIGHBOR(FATHER(P) ,S,Q,L)

else Q-FATHER(P);

/* follow-reflected path to locate the-iheighbor */

if not NULL(Q) and GRAY(Q) then

begin

QSON(Q,REFLECT(S,SONTYPE(P)));

L L- 1;

end;

end;



procedure FINDCORNER(P,C,Q,L);

/* given node P, return in Q the node which is adjacent to

corner C of node P. L denotes the level of the tree at

which node P is initially found and the level of the tree

at which Q is finally found */

begin

node P;

reference node Q;

quadrant C;

reference integer L;

L-L+I ;

if not NULL(FATHER(P)) and SONTYPE(P) OPQUAD(C) then

if SONTYPE(P)=C then FINDCORNER(FATHER(P) ,C,Q,L)

else FIND NEIGHBOR(FATHER(P) ,COMMONSIDE(SONTYPE(P) ,C) ,Q,L)

else Q-FATHER(P);

/* follow opposite path to locate the neighbor */

if not NULL(Q) and GRAY(Q) then

begin

QSON(Q,OPQUAD(SONTYPE(P)));

LenL-1;

end;

end;

-JJ



5. Analysis

The running time of the QMAT computation algorithm is

measured by the number of nodes that are visited and by the

size of the quadtree. For each BLACK node we must visit a

minimum of one neighbor and a maximum of eight neighbors of

greater than or equal size in order to determine whether the

block corresponding to the node is subsumed--i.e., contained

in a square centered at its neighbor (e.g., block 14 is sub-

sumed by block 15 in Figure 3b). Clearly, for each BLACK node,

the worst case in terms of the number of nodes that must be

visited arises when the neighbor that is being sought is of

equal size (e.g., the NE neighbor of block Ii in Figure 3b--

i.e., block 5). Thus we only need to analyze the amount of

work performed by procedures FIND_NEIGHBOR, FINDCORNER, and

QMAT. Our analysis assumes a 2n by 2n random image--i.e., a

BLACK node is equally likely to appear in any position and

level in a quadtree. The analysis closely parallels that per-

formed in (14] for the Chessboard distance transform.

Lemma 2: The average of the maximum number of nodes visited

by each invocation of FINDNEIGHBOR is less than 4.

Proof: Given a node P at level i and a horizontal or vertical

direction S, there are 2 n-i. (2 n-i-1) possible positions for

node P and a neighbor at level i and direction S. Of these



2 *n-'(2 n-i1) neighbor pairs, 2 -.2 have their nearest

common ancestor at level n, 2n - i 21 at level n-i,..., and

2 n-i- 2n-i-l at level i+l. For each node at level i having

a common ancestor at level j, the maximum number of nodes

that will be visited by FIND NEIGHBOR is (j-i) + (j-i) -

2-(j-i). Assuming that node P is equally likely to occur at

n-i n-i
any level i and at any of the 2 *-(2 -1) positions at

level i, then the average of the maximum number of nodes

visited by FIND NEIGHBOR is

n-i n n-i n-j
E E 2 2n-2(j-i)

i=O j=i+l (1)n-1n n-i n-i
Z 2 *(2 -1)

i=O

(1) can be rewritten to yield

n-1 n-i-i 2 n-2i-j
E E 2 (j+l)

i=0 j=0 (2)
n
Z 2 (2 -1)

i=l

The numerator of (2) can be simplified as follows:

n-i n-l-i 2n_2i-j n-I 2 n-l-i n-i 2 n-l-i 1
I . (j+l) = 22n2 j _ + z 22n2 E -.

i=0 j=0 i=O j-0 2 3 i=0 j=O 23

But n-1-1But = 2 - n+l-i (4)

j=O 23 2 n-l-
i

Also n--i (5)
Z -O 2(l 2j=0 2i 2 n - i



Substituting (4) and (5) into (3) yields
n-1 n2 n+l-i1

n 2 2  (2 n-li + 2(1 n - i ) )

i=O 2 2

= E (2 2n+2-2i 2 n+l-i(n+l) + 2 n+l-i.-i 2 n+ l - i)

i=O

2n+2 n-i 1 n+i n-i 2n+1 n-i= 22+ E 2n l (n+2) Z _i+ 2 -

i=O 2 i=O 21 i=O 22"

= 2 2n+2 4 (11)- 2n+i. l) +2 n+l n+l= 2 2n2 4 I 2 -~ l (n+2) -2(1- -L2n  (2- 2~

4 2 2n+2 16 -(n+2)2 n+ n+2)+2n+2 4(+l)

4 2n+2- n+2 4
4 2n (n+l)2( 2 (6)

The denominator of (2) can be simplified as follows:

n n (2i

E 2 (2 i-1) = ( 2 2i 2 i)
i=l i=O

n nE 4i n 2 i= 1. - i
i=O i=O

4 4n+- 1 ( 2 n+l -
1 )

or n 2i ( 2 i - l  1 (2n+2-3 . n + 1 + )  7
E 2 (2 -1) T= 2 32 2 7

i=l

Substituting (6) and (7) into (2) yields



4 2n+2 (+D 2n+ 2  4 n+23S = 4 3(n-l)-2n+12
1 2 2n+2 _ 3 2 n+1+ 2 ) 2 2n+2 3 2 n+l+2

4 as n gets large

<4

Q.E.D.

Lemma 3: The average of the maximum number of nodes visited

by each invocation of FIND CORNER is less than 16
3.

Proof: Given a node P at level i and a diagonal direction S,

there are (2 n-i-1 ) 2 possible positions for node P and a neigh-

bor at level i in direction S. Of these (2 n-i-1) 2 neighbor

pairs, 4 0.(2 " (2 n-i-l)-1 ) have theirznearest common ancestor

at level n, 4 1(2.( 2n-i-i )-I) at level n-l,... and

4n-i-l- (2-(2n-i-(n-i-l)-l)-l) at level i+l. In order to see

this, consider Figure 9 where a grid is shown for n=3. If

all BLACK and WHITE nodes are at level 0, then for a neighbor

in the NE direction we see that nodes along the fifth row and

fourth column have their nearest common ancestor at level 3

(i.e., 13 nodes labeled 1-13). Continuing the process for

the NW, NE, SW, and SE quadrants of Figure 9 we find that all

neighbor pairs contained exclusively within these quadrants

have their nearest common ancestor at a level s2. In parti-

cular, for the NW quadrant, nodes along the third row and

second column have their nearest common ancestor at level 2

(i.e., 5 nodes labeled 14-18). The NE, SW, and SE quadrants



are analyzed in a similar manner. This process is applied

to the four subquadrants of the quadrants to obtain the

neighbor pairs whose nearest common ancestor is at level 1.

Note that we had to consider every row in the image when

analyzing diagonal neighbor pairs whereas we only needed to

consider one row or column when analyzing neighbor pairs in

the N, E, S, and W directions. This is necessary because

for diagonal neighbors, each row in the image has a different

number of neighbor pairs with a common ancestor at a given

level while this number is constant for each row or column

when considering neighbor pairs in the horizontal and

vertical directions.

For each node P at level i having a common ancestor at

level j, the maximum number of nodes that will be visited

by FINDCORNER is (j-i)+(j-l) = 2.(j-i). Assuming that node

P is equally likely to occur at any level i and at any of the

(2 n-i-1) 2 positions at level i, then the average of the maximum

number of nodes visited by FINDCORNER is

n-1 n
Z 4n  (2"(2n- ( )-l)- 2-(j-i)

i=0 j=i+l
n- n-i 2
Z (2n-1)

i=O

n-l n (2n-j-i+2- 2n-2J+l

i=Q j=i+l n-1 (8)
n-l (n-i-l 2

E (2 -)
i=O



(8) can be rewritten to yield

n-i n-l-i
E E ( 2 2n2i+J-3. 2 2n2i-2j) (j+l)

i=O j=0 (9)
nZ (2i-i)2

i=1

The numerator of (9) can be simplified as follows

n-i n-l- 22n-2i+l-J - 2n-2i- l - 2 j

i=0 j=0

n 2 i+ I n-l-i n-l-i 1. 2n-2i-l n-l-i - n-l-i
= ~(2 n-i~( - + E -. )-3-2 -= --).+

i=0 j=0 2 j  j=0 23 j--O 22j j=0 2 2

But n-li-i (i0)
Z -aI-- 2 n+l-i (ii)

j=0 23 2 n-i

n-l-i (12)
-= 2(1- -i) (12)

j=0 2 3

n-l- 3 = (4 - 3(n- l- i)+4(
2En _2 9 22(13)

j=0 2
n-l-i1 41

E. 2j 3( 2n-2i (14)
j=0 2 2

Substituting (ii), (12), (13), and (14) into (10) yields
n-I + n-Il-i+2( 1 2n2-
nE (2 2n-2i+ (2 - -nli 2(l - ))-3-2 2n-2i-

i=O 2 n--I 2n-l

1 3(n-l-i)+4) ) +4 1

2 2n22i +n 3(i 22n-2i

n 1 (2 2n-2i+2_n 2n - i+ 2 2 n-i+ 2
+ i -2n-i+ 2 + 2 2n-2i+2 2n-i+2

i=O

- 1 2 2n-2i+l+2n-2-2i +8 2 2n-2i+1+ 2 )3 n-- 3



n-1 (8 22n-2i+l n-i+2+. 2 n-i+2+ _ + 8
- (T -(n+2)-2- i2 +2n-2i +

i=o
n-1 n-i

_8 2  ~nl 1  n+2 fl 1
-.2 2n+1 E 2- - (n+2)- 2 n + 2 7 -- ,. +

3 i=O 221 i=O 2

n-i n-i 8
+ 2n  E . + 2n 2 n i + 8

i=O 21 i=O

8 2 2n+i l 2 n+2 1- 2 •(l -2 n  2) .2 2(l -22

n+ 2 n. (n-i)
+2 n  (2 - i) + 2n -2 -n

2 .- 3

S 22n+6 - 64- (n+2)-2 n+3+8 - (n+2)+2 n + 3 -8 (n+l)+2n2-n 2 +n+ n

1 9 2
2n+6_ (n 1 ).2 n+3 + n2 11 8 (- 9 9 (15)

The denominator of (9) can be simplified as follows:

n n n n
E (2 i-1) = 22 - 2 z 21 + E .i

i=1 i=O i=O i=O

n i- n+ll
= E 4 -2(2 -l)+n+l

i=O

= 4n+l-1 -2n+2+2+n+l

3

or (2i-)2 = 1(2n+2- .2n+2+3n+8) (16)i=



Substituting (15) and (16) into (9) yields

1 - 22n+6-(n+l)'2n+3 +n2 + 11 + 8
9 -n+l

1 (2n2- 
3 "2n+2+ 3n+ 8 )

16 2 2n+2 6.(n+l)-2n+2 3 n 2 + lln + 83 3
22n+2_ 3-2n+2 +3n+8

16 (6n-10)2 n+2-3n2+5n+40

3 22n+2 -3.2n+2+3n+8

<16
3

Q.E.D.

It is also useful to obtain the number of nodes in the quad-

tree. Letting B and W correspond to the number of BLACK and

WHITE, respectively, leaf nodes in the quadtree we have

Lemma 4: The number of nodes in a quadtree having B and W

leaf nodes is bounded by s (B+W).

Proof: See Lemma 1 in [13].

We can now prove our main result.

Theorem 3: The average execution time of the QMAT computation

algorithm is of order B+W.

Proof: From Lemmas 2 and 3 we have that for each side and

corner of a BLACK node, FINDNEIGHBOR and FINDCORNER result

in an average of 4 + L- - 91y nodes being visited. There are

four sides and corners for each BLACK node. Thus these four



procedures contribute 4B-97. From Lemma 4 we have that the
4

number of nodes in the quadtree is bounded by i • (B+W). This

quantity correlates with the work performed by procedure QMAT

since each node in the quadtree is visited by the traversal.

Summing up these values we have 4B9 + • (B+W) = - (29-r".7).

Q.E.D.

Note that our upper bound means that for small values of n

the amount of work is essentially proportional to the com-

plexity of the image--i.e., to the number of BLACK nodes.

The algorithm has an execution time complexity of the same

order cf magnitude as the one developed in [18] for the com-
4

putation of the Chessboard distance transform--i.e., 1 -(43-B+1W).

Observe that an implementation of Algorithm A of Section 3

would require work proportional to Bt2 since sorting is required

(a B.log B operation) as well as checking every BLACK block

against the other for subsumption.



6. Concluding remarks

The concept of a skeleton and medial axis transform

have been adapted to images represented by quadtrees. An

algorithm for the computation of the medial axis transform

for such a quadtree representation (QMAT) has been presented

and shown to have an average execution time of order (B+W)

where B and W correspond to the number of blocks comprising

the objects and the background of the image respectively. It

should be noted that the number of BLACK nodes (i.e., the image

complexity) dominates the execution time of the algorithm.

The algorithm and its analysis are somewhat similar to

those used in the computation of the Chessboard distance

transform [18]. The difference is that for each BLACK node

only its neighbors of greater or equal size needed to be

examined and not their progeny as was the case in [181. A

new result of our analysis is that finding a corner neighbor

is approximately 4/3 as complex as finding an adjacent neigh-

bor. The algorithm in its present form could not be combined

with the computation of the Chessboard distance transform and

done in one pass (i.e., it requires a separate traversal of

the tree) since computation of the QMAT relies on knowledge of

the distance transform values of a node's neighbors.

The algorithm can be varied in several ways. First, in

its present state, procedure QMAT overwrites the existing

quadtree. It may be desirable to have an algorithm which



constructs the QMAT while retaining the original quadtree.

This is quite simple and can be accomplished by modifying

procedure QMAT to allocate a node each time it visits one

in the original quadtree. Note that our analysis assumed

that all eight neighbors of a node are visited while attempt-

ing to ascertain if it is subsumed by one of its neighbors.

In fact, we cease processing as soon as subsumption is found

to occur. Another observation is that when overlap exists

(e.g., in Figure 3b, block 10 is the NW neighbor of block 12

and is also its northern neighbor) we need not invoke

FIND-NEIGHBOR or FIND-CORNER for the neighbor which overlaps

the two directions. However, such a variation is of little

value since the number of neighbors can be shown to range

between five and eight.

The definition of the Quadtree medial axis transform in

terms of the Chessboard distance transform demonstrates the

appropriateness of the Chessboard distance metric for quadtrees.

In particular, the analogy between squares and circles as the

basis for the medial axis transform for the quadtree is note-

worthy. Also, notice the similarity between the process of

obtaining the QMAT and thinning [11 an image.

The advantage of the QMAT is in its compactness (e.g.,

recall Figures 3 and 5) and in its decreased sensitivity to

shift (recall Figures 6 and 7). In the worst case, the QMAT



is identical to the quadtree. The medial axis transform is

often used as an alternative to a border representation

because of its amenability to the determination of whether

or not a given point lies within a particular region [11].

This is not a problem when the quadtree representation is

used. However, in the case of the QMAT this is slightly more

complex since a WHITE block does not necessarily imply that

the entire space spanned by the block is WHITE--i.e., its

neighbors may also have to be examined.

In Section 2 we saw that there are two ways of defining

a Quadtree Skeleton with a small difference in the QMAT al-

though the QMAT was shown to require the same number of nodes

in either case. Using property (3) resulted in a simpler

QMAT construction algorithm while using property (3') results

in obtaining a Quadtree Skeleton of less than or equal size.

Since we are primarily interested in storage compactness in

the form of a tree, the difference was not important. However,

we also wish to be able to reconstruct the quadtree from its

QMAT. In such a case, the reconstruction process is simpler

given a Quadtree Skeleton satisfying property (3') since the

Quadtree Skeleton is less than or equal in size (e.g., 2 nodes

vs. 3 nodes in Figures 4b and 4c respectively). In essence,

a reconstruction process must add nodes corresponding to S(t.)

for each ti  T, the Quadtree Skeleton. A subsequent paper will

discuss the QMAT to quadtree reconstruction process in greater

detail.



Fruitful subjects for future research include the investi-

gation of algorithms for set operations such as intersection

and union as well as connectivity and perimeter using the

QMAT representation. A more thorough study of the relation-

ship between the amount of space occupied by a quadtree and

its QMAT would also be welcome.



References

1. H. Blum, A transformation for extracting new descriptors
of shape, in Wathen-Dunn, ed., Models for the Perception
of Speech and Visual Form, M.I.T. Press, Cambridge, MA,
1967, 362-380.

2. R. 0. Duda and P. E. Hart, Pattern Classification and
Scene Analysis, Wiley Interscience, New York, 1973.

3. C. R. Dyer, Computing the Euler number of an image from
its quadtree, Computer Science TR-769, University of
Maryland, College Park, Maryland, May 1979.

4. C. R. Dyer, A. Rosenfeld, and H. Samet, Region represen-
tation: boundary codes from quadtrees, Computer Science
TR-732, University of Maryland, College Park, Maryland,
February 1979.

5. G. M. Hunter, Efficient computation and data structures
for graphics, Ph.D. dissertation, Department of Electrical
Engineering and Computer Science, Princeton University,
Princeton, NJ, 1978.

6. G. M. Hunter and K. Steiglitz, Operations on images using
quadtrees, IEEE Transactions on Pattern Analysis and
Machine Intelligence 1, 1979, 145-153.

7. G. M. Hunter and K. Steiglitz, Linear transformation of
pictures represented by quad trees, Computer Graphics and
Image Processing 10, 1979, 289-296.

8. A. Klinger and C. R. Dyer, Experiments in picture repre-
sentation using regular decomposition, Computer Graphics
and Image Processing 5, 1976, 68-105.

9. P. Naur (Ed.), Revised report on the algorithmic language
ALGOL 60, Communications of the ACM 3, 1960, 299-314.

10. J. L. Pfaltz and A. Rosenfeld, Computer representation of
planar regions by their skeletons, Communications of the ACM
10, 1967, 119-122, 125.

11. A. Rosenfeld and A. C. Kak, Digital Picture Processing,
Academic Press, New York, 1976.

12. H. Samet, Region representation: quadtrees from boundary
codes, Computer Science TR-741, University of Maryland,
College Park, Maryland, March 1979.



13. H. Samet, Computing perimeters of images represented by
quadtrees, Computer Science TR-755, University of Maryland,
College Park, Maryland, April 1979.

14. H. Samet, Connected component labeling using quadtrees,
Computer Science TR-756, University of Maryland, College
Park, Maryland, April 1979.

15. H. Samet, Region representation: raster-to-quadtree con-
version, Computer Science TR-766, University of Maryland,
College Park, Maryland, May 1979.

16. H. Samet, Region representation: quadtrees from binary
arrays, Computer Science TR-767, University of Maryland,
College Park, Maryland, May 1979.

17. H. Samet, Region representation: quadtree-to-raster
conversion, Computer Science TR-768, University of
Maryland, College Park, Maryland, June 1979.

18. H. Samet, A distance transform for images represented
by quadtrees, Computer Science TR-780, University of
Maryland, College Park, Maryland, July 1979.

19. M. Shneier, A path-length distance transform for quad-

trees, Computer Science TR-794, University of Maryland,
College Park, Maryland, July 1979.

20. M. Shneier, Linear-time calculations of geometric pro-

perties using quadtrees, Computer Science TR-770,

University of Maryland, College Park, Maryland, May 1979.



a d

c

b e

Figure 1. A rectangle and its skeleton using dE.

1111111111 0 01111111111 1 1
1111111111 2 21111111111 33331111111111 2 21111111111 1 1
1111111111 0 0

a. Image C. MAT of the image in (a)
using dA.

1111111111
1222222221
1233333321

1234444321 33331233333321
1222222221
1111111111

b. dA and d for the image d. MT of the image in (a)
in (a). using dM.

ri~ie 2. A binary array representation of an image, its distance

tr1 2om an it 3MAT.32



23
/H22

¢4 24 25 26

/ 27

N 177

33 / L/
35 36 39 40 42 :43

a. Sample image b. Block decomposition of the
image in (a).

I/ i 0

i 0/ 0 0

/-0

0 10 11(2)

Fi e 3. A H cors 15 (4) K0 0 10 TI/
0 3 3 1L M

0 0 0 0 0 0 1111

d. Chessboard distance transform e. Block decomposition of theof (b). QMAT of (b). Radius values
are within parentheses.
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transform is within parenttreses.

Figure 7. An image having a minimal QMAT and its corresponding
quadtree and QMAT, and the result of shifting it
by one unit to the right. Blocks in the image are
shaded.
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h. u~dreerepresentation of the im aqe in (a).

5 10 11 12 13 14 23 2129 31

1 346 8915 1617 18 192021 22 25 26 27 28

),iadtreo Reprqsentation of the imaae in W.)

Figure 7 (continued)
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c. 1MAT reo-resentation of the irage In (a).
Aad".s values are writhir. parentheses.
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f. QMAT representation. of the image in (d). Fadius values are
within parentheses.

Figure 7 (continued)
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Figure 8. Relationship between a block's four quadrants and its
boundaries.
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Figure 9. Sample grid illustrating blocks whose nodes are at level
0and whose nearest common ancestor is at levell 2

when attempting to locate a NE neighbor.
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